四色定理

百科
四色定理

四色定理

四色定理(世界近代三大数学难题之一),又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。很多人证明了二维平面内无法构造五个或五个以上两两相连区域,但却没有将其上升到逻辑关係和二维固有属性的层面,以致出现了很多伪反例。不过这些恰恰是对图论严密性的考证和发展推动。计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有无数数学爱好者投身其中研究。

基本介绍

  • 中文名:四色定理
  • 外文名:Four color theorem
  • 别称:四色问题,四色猜想
  • 提出者:格斯里(Francis Guthrie)
  • 提出时间:1852年
  • 套用学科:拓扑学、图论
  • 适用领域範围:地图编辑
  • 类别:世界近代三大数学难题之一

四色问题简介

四色问题又称四色猜想、四色定理,是世界近代三大数学难题之一。地图四色定理(Four color theorem)最先是由一位叫古德里(Francis Guthrie)的英国大学生提出来的。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。
用数学语言表示即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。”这里所指的相邻区域是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。

发展简史

问题的提出

1852年,毕业于伦敦大学的格斯里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现每幅地图都可以只用四种颜色着色。这个现象能不能从数学上加以严格证明呢?他和他正在读大学的弟弟决心试一试,但是稿纸已经堆了一大叠,研究工作却是没有任何进展。
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、着名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、着名数学家哈密顿爵士请教,但直到1865年哈密顿逝世为止,问题也没有能够解决。
1872年,英国当时最着名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
从此,这个问题在一些人中间传来传去,当时,三等分角和化圆为方问题已在社会上“臭名昭着”,而“四色瘟疫”又悄悄地传播开来了。

肯普的研究

1878~1880年两年间,着名的律师兼数学家肯普(Alfred Kempe)和泰勒(Peter Guthrie Tait)两人分别提交了证明四色猜想的论文,宣布证明了四色定理。
大家都认为四色猜想从此也就解决了,但其实肯普并没有证明四色问题。11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。
这是不正规的四色地图,实为五色这是不正规的四色地图,实为五色
不过,让数学家感到欣慰的是,郝伍德没有彻底否定肯普论文的价值,运用肯普发明的方法,郝伍德证明了较弱的五色定理。这等于打了肯普一记闷棍,又将其表扬一番,总的来说是贬大于褒。真不知可怜的肯普律师是什幺心情。 追根究底是数学家的本性。一方面,五种颜色已足够,另一方面,确实有例子表明三种颜色不够。那幺四种颜色到底够不够呢?这就像一个淘金者,明明知道某处有许多金矿,结果却只挖出一块银子,你说他愿意就这样回去吗?

肯普的贡献

肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。
不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。
肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标準方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当複杂的。

缓慢的进展

人们发现四色问题出人意料地异常困难,曾经有许多人发表四色问题的证明或反例,但都被证实是错误的。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。
四色定理的本质就是在平面或者球面无法构造有五个或者五个以上的两两相连的区域,如果有五个以上两两相连区域,第五个区域至少与一个区域同一种颜色。这个理论在其他构造中是显然的,例如在环面上(亏格为1),需要7色,就是因为环面不能构造8个两两相连区域。在亏格为2的双环面上,需要8色,就是不能构造9个区域两两相连。
1913年,美国着名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的构想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,温恩从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。

计算机证明

高速数字计算机的发明,促使更多数学家对“四色问题”的研究。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。就在1976年6月,在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿个判断,结果没有一张地图是需要五色的,最终证明了四色定理,轰动了世界。
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特製邮戳,以庆祝这一难题获得解决。
但证明并未止步,计算机证明无法给出令人信服的思考过程。问题影响
四色定理-非正规地图四色定理-非正规地图
一个多世纪以来,数学家们为证明这条定理绞尽脑汁,所引进的概念与方法刺激了拓扑学与图论的生长、发展。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程式上都起到了推动作用。

逻辑证明

理论基础

地图上任何一个区域必将存在邻域,且又通过邻域与其他非邻域发生间接联繫,可以将任何一个地图以图论图形的表示出来。
假设存在一张至少需要m种着色的地图,那幺决定该地图必须要用m种着色的条件有且只有一个,即该地图至少存在这样一个区域Q,与该区域相邻的所有区域必须满足m-1着色。首先满足这个条件后,Q只能用第m种颜色,其次如果这个推论一是错误的,对于m着色地图不存在这样的区域,那幺地图上任何一个区域的邻域只能满足少于m-1的着色,那幺整个地图势必不需要m种颜色,这与假设相矛盾,所以这是一个充分必要条件。(推论一)
假设随意取一张任意结构的至少m着色的地图M,其上满足上述条件的区域有n个,那幺将图论图形中的这n个区域及其与邻域的关係线我们可以全部去掉,这样我们就将构建一个至少m着色地图M的问题转化成了一个在至少需要m-1着色地图上添加n个满足推论一条件的区域问题。
如果五着色地图存在且能构建成功,那幺必然存在构建这样五着色的四着色模型图,而要存在这样的四着色模型图必然存在构建该四着色的三着色模型图,同理要存在这样的三着色模型图必然要存在构建它的二着色模型图,那幺我们来构建一下五色图是否存在。

二着色地图

二着色地图是由一着色而来的一种简单的着色地图模型,我们很容易得到满足二着色的地图仅有的两种类型的结构,一种是不闭合的链状结构;另一种是由第一种衍生出来的闭合的环状结构且环所联繫的区域为偶数个,称为偶数环。
二着色结构特点是奇偶位置决定着色,任何两个区域的任何联繫链条只有相隔偶数个区域才满足两区域着色不同,我们定义这两个区域为偶隔域。

三着色地图

我们随意取一张任意结构的二着色的地图M,来构建一个具有n个满足推论一条件区域的地图Q,构建方式有且只有一个,就是在图论图形中我们如何去掉的这n个区域及其与邻域的关係线,我们接怎幺给它添加回去。我们任取这n个区域中一个区域q为例,只要我们在M地图上将必须满足二着色的几个区域W直接联繫到q上,这样就满足推论一中的条件而使Q必须为三着色。而W要满足二着色则必定含有偶隔域,如果W有x个区域和q发生直接联繫,则q上出去的关係线有x个,那幺我们一定可以将该複杂的联繫分解成x-1个不可分解关係环,其中至少有一个不可再分的关係环是M中的偶隔域与q联繫的,(推论二)假设这个推论是错误的,所有不可再分的环全部是奇隔域,那幺这些环拼接回去时满足每个小环的间隔区域数相加再减去共用的区域,仍旧是奇隔域,这样W便不满足二着色,所以这些不可再分环中一定有偶隔域和q发生联繫而构成奇数环(环连的区域为奇数),并且导致q必须使用第三色的就是这些不可再分的奇数环。由于满足二着色的只有偶隔域一种条件,那幺构造的三着色地图中决定三着色的条件也只有一种,存在不可再分的奇数环。

四着色地图

在上面构建的三色着色地图Q基础上我们再来构建四着色地图P,假如P存在满足推论一条件的区域有k个,同样的方法,我们任取k中一个区域p,只要我们在Q地图上将必须满足三着色的几个区域R直接联繫到p上,这样就满足推论一中的条件而使P必须为四着色。而R要满足三着色则必定含有奇数环并且组成奇数环的区域都能够与p发生联繫(保证奇数环没有被包围在其他闭合环内的部分),如果R有y个区域和p发生直接联繫,则p上出去的关係线有y个,那幺导致p为第四色原因是可发生联繫的奇数环,既只要有一个这样的奇数环存在就一定会导致p使用第四色(推论三),假设这一推论不成立那幺没有这样的奇数环存在,则由前面二着色建立三着色正经得到,除了奇数环再没有能使地图为三着色的条件了,或者当奇数环区域不能全部与p发生联繫,这样p必然的不需要第四色了。故我们的推论三成立。由于三着色条件唯一而使得p四着色的条件唯一,我们来看四着色条件的特点,当p与R发生联繫后,不管R有多少满足条件的奇数环,势必最终只能有包括p在内的三个区域能与外界区域发生联繫。因为p和R上的任何两个区域都可以构成一个封闭的三角形,而当我们选的R上这俩区域与p关係线是最外侧的关係线时,则R上其他区域一定不能在三角形外,不然或造成以上两根关係线不再是最外侧或者有关係线出现交叉,所以R上剩余区域必定在三角形内而造成四着色图最多只有三个区域能与外界发生联繫。

五着色地图

那幺我们在构建五着色地图时,四着色结构最多提供三种不同着色,不能满足推论一的条件,而决定将无法构建五着色地图。

拓扑证明

四色定理证明的关键可以归纳为二维平面内两条直线相交的问题。
1.将地图上不同的区域用不同的点来表示。
2.点与点之间的连线用来表示地图上两区域之间的相邻逻辑关係,所以,线与线之间不可交叉(即不可存在交叉而没有公共交点的情况),否则就超越了二维平面,而这种平面暂时称它为逻辑平面,它只反应区域之间的关係,并不反应实际位置。
通过以上的变换处理,可以将对无穷尽的实际位置的讨论,变为有条理可归纳的逻辑关係的讨论,从而提供了简单书面证明的可行性。
如果证明可以用一句话来说,那就是:“二维平面不存在交叉直线,只存在共点直线。
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:ailianmeng11@163.com